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Exercise 8C 
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4 In order to find the area enclosed by a single loop, we calculate 
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6 The points of intersection are given by i1 sin 3s n    
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7 a The set of points       arg
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7 b The equation for a circle centred at (4, 3)  with radius 5, in Cartesian coordinates is 

2 2( 4) ( 3) 25.x y     To find the area of the region bounded by A , 
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8 a The set of points       
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8 b To find the area of the region bounded by A , 
π

2
   and π  , we use the polar form 

24cos 10sinr      to calculate 
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9 In order to find the area of the shaded region, we must find the area of the sector bounded by the 

curve and the lineOA , then subtract the area of the triangle OAB . The value of   at the point A  can 

be found by solving 
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Now we find the area of the triangle OAB  by using the formula  
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10 Note that there is symmetry about the vertical axis and so we may compute one side and multiply by 

2. In order to find the area of the shaded region, we first must find the area of the sector of 

1 sinr    between π    and the right hand side intersection point of the two curves. 

This intersection point occurs when i1 sin 3 s n    i.e. when 
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This integral has included a small extra region we do not want  

(the red region in the image)   

 

 We find the value of the unwanted regions area (which we will denote 2A ) by  
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So the right hand side of the shaded region has area  

 
0.59652 0.20382
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Remember that this is only half of the total region we want to find, so that means we just need to 

double 
right
A  in order to find 0.79 (2 d.p.)totalA     
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Challenge 

 a The far left hand side of the shell is a point which occurs when 3π   and so we can set 

3 π
left
r k .  

 Similarly for the far right hand side of the shell, which occurs at 4π  , giving 4 π
right
r k .  

  Thus the horizontal diameter is  

π 37 d k cm, so we conclude that 
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 b In order to find the total area of the cross section, we must ensure that all angles are covered 

exactly once. So we choose to integrate between     .π 42 π� �  
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